Problem Set 2

Spectral clustering and community detection

1. Let B be a $n \times n$ real matrix and $\varepsilon \in(0,1 / 2)$. Then, for any ε-net \mathcal{N} of $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|_{2}=1\right\}$, we have

$$
\|B\|:=\sup _{x, y \in S^{n-1}}\langle x, B y\rangle \leq \frac{1}{1-2 \varepsilon} \cdot \max _{x, y \in \mathcal{N}}\langle x, B y\rangle
$$

2. (a) Let X be a mean zero bounded random variable and let Y be an independent copy of X. For $\theta \in \mathbb{R}$, show that

$$
\mathbb{E}\left[e^{\theta X}\right] \leq \mathbb{E}\left[e^{\theta(X-Y)}\right]
$$

(b) Let η be an independent symmetric Bernoulli, i.e, $\mathbb{P}(\eta=+1)=\mathbb{P}(\eta=-1)=1 / 2$. Use
(i) $X-Y \stackrel{d}{=} \eta(X-Y)$
(ii) $\frac{1}{2}\left(e^{x}+e^{-x}\right) \leq e^{x^{2} / 2}, x \in \mathbb{R}$ to show that

$$
\mathbb{E}\left[e^{\theta(X-Y)}\right] \leq \mathbb{E}\left[e^{\theta^{2}(X-Y)^{2} / 2}\right]
$$

(c) Let B be an $n \times n$ (non-symmetric) matrix such that the entries are independent, mean zero, and $\left|B_{i j}\right| \leq 1$ for all i, j. Prove that for any $x, y \in \mathbb{R}^{n}$ with $\|x\|_{2}=\|y\|_{2}=1$ and for any $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left[e^{\theta\langle x, B y\rangle}\right] \leq e^{2 \theta^{2}}
$$

(d) Use part (c) to conclude that for any $u>0$,

$$
\mathbb{P}(\langle x, B y\rangle \geq u) \leq e^{-u^{2} / 8}
$$

3. (a) Let W_{k} be the number of walks on $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ of length $2 k$ starting and ending at 0 , i.e.,

$$
W_{k}=\#\left\{\left(S_{0}, S_{1}, \ldots, S_{2 k}\right): S_{0}=S_{2 k}=0,\left|S_{i+1}-S_{i}\right|=1 \text { for each } i\right\}
$$

Argue that $W_{k}=\binom{2 k}{k}$.
(b) Let B_{k} be the number of walks on \mathbb{Z} of length $2 k$ which starts at 0 and also ends at 0 and touches (or cross) -1 in between. Argue that $B_{k}=\binom{2 k}{k-1}$.
[Hint. Let $\left(0, S_{0}\right),\left(1, S_{1}\right), \ldots,\left(2 k, S_{2 k}\right)$ be the graph of such a walk in \mathbb{Z}^{2}. Flip the portion of the graph across the line $y=-1$ from the time it first hits -1 .]
(c) Let C_{k} be the number of walks on \mathbb{Z} of length $2 k$ which starts and ends at 0 and always stay at or above 0 in between. Show that

$$
C_{k}=\frac{1}{k+1}\binom{2 k}{k}
$$

(d) Let $d \geq 2$ be an integer. Consider the infinite d-ary tree. Show that the total number of walks of length $2 k$ on the vertices of this tree which starts and ends at the root is

$$
R_{k}(d)=\frac{1}{k+1}\binom{2 k}{k} d^{k}
$$

(e) Argue that $\lim _{k \rightarrow \infty} R_{k}(d)^{1 / 2 k}=2 \sqrt{d}$.
(f)* Suppose now that in the infinite tree, the root has D children $(D>d)$ and the rest of vertices have d children as before. Let $\widetilde{R}_{k}(d, D)$ be the total number of walks of length $2 k$ in the modified tree starting and ending at the root. Show that

$$
D^{k} \leq \widetilde{R}_{k}(d, D) \leq D^{k}(1+4 d / D)^{k}
$$

Therefore,

$$
\sqrt{D} \leq \liminf _{k \rightarrow \infty} \widetilde{R}_{k}(d, D)^{1 / 2 k} \leq \limsup _{k \rightarrow \infty} \widetilde{R}_{k}(d, D)^{1 / 2 k} \leq \sqrt{D}(1+4 d / D)^{1 / 2}
$$

This implies that if D is very large compared to d, then $\widetilde{R}_{k}(d, D)$ grows like D^{k}, which shows that a single large degree vertex can have enormous effect on the total number of walks.
4. Let B be the non-backtracking matrix of graph G with n vertices and m edges.
(a) Show that for any two edges (x, y) and (u, v) of G,

$$
\left(B^{t}\right)_{x \rightarrow y, u \rightarrow v}=B_{y \rightarrow x, v \rightarrow u}
$$

Let P be the $2 m \times 2 m$ matrix of size with its rows and columns indexed by directed edges such that

$$
P_{x \rightarrow y, u \rightarrow v}=1_{\{u=y, x=v\}} .
$$

Show that $P^{t}=P$ and $P^{2}=I$. Argue that $B^{t}=P B P$ and consequently, $\left(B^{k}\right)^{t}=P B^{k} P$ for any integer $k \geq 1$.
(b) Assume that the minimum degree of G is at least 2 . Show that B has n singular values $\operatorname{deg}(v)-1, v \in V$ and its other $2 m-n$ singular values are 1 .
[Hint: $B B^{t}$ is a block-diagonal matrix.]
5. (Kesten-Stigum bound) Consider the two-type Galton-Watson tree as discussed in the lecture.

- The root o is colored red or blue with probability $1 / 2$.
- Recursively, each vertex gives birth to $\operatorname{Poi}(a / 2)$ many vertices of the same color and a $\operatorname{Poi}(b / 2)$ many vertices of the opposite color. Assume that $a>b>0$.
- For each vertex v, assign label $\sigma_{v}=+1$ or -1 depending on whether the color of v is red or blue respectively.
(a) Argue that the distribution of the above labeled tree is same as follows:

Set $d=(a+b) / 2$ and $\varepsilon=b /(a+b)$. Consider a Galton-Watson tree with Poi (d) offspring distribution. Let σ_{o}, the label of the root, be ± 1 with equal probability $1 / 2$. Given the label of a parent, each of its children gets the same label of the parent with probability $1-\varepsilon$ and opposite label with probability ε, independently of others.
[Hint: the following fact (known as Poisson splitting) may be useful. Suppose we have N balls where $N \sim \operatorname{Poi}(\lambda)$. Color each ball independently red or blue with probability p and $1-p$. Let N_{1} and N_{2} be the number of red and blue balls respectively $\left(N=N_{1}+N_{2}\right)$. Then $N_{1} \sim \operatorname{Poi}(\lambda p)$ and $N_{2} \sim \operatorname{Poi}(\lambda(1-p))$. Moreover, N_{1} and N_{2} are independent.]
(b) Let F_{n} be the set of vertices at depth n of the tree from the root. Set $\theta=1-2 \varepsilon$. Define

$$
S_{n}:=\frac{1}{(d \theta)^{n}} \sum_{v \in F_{n}} \sigma_{n}
$$

Show that $\mathbb{E}\left[S_{n} \mid \sigma_{0}\right]=\sigma_{0}$ for all $n \geq 1$.
(c) Show that

$$
\operatorname{var}\left(S_{n}\right) \rightarrow\left\{\begin{array}{cl}
\frac{1}{1-\left(d \theta^{2}\right)^{-1}} & \text { if } d \theta^{2}>1 \\
+\infty & \text { if } d \theta^{2} \leq 1
\end{array}\right.
$$

(d) Conclude that there exists a positive constant $c=c(a, b)>0$ such that

$$
\operatorname{corr}\left(S_{n}, \sigma_{0}\right) \rightarrow \begin{cases}c & \text { if } d \theta^{2}>1 \\ 0 & \text { if } d \theta^{2} \leq 1\end{cases}
$$

Also check that $d \theta^{2}>1$ if and only if $\frac{a-b}{2}>\sqrt{d}$.
In words, above the KS threshold, i.e., when $\frac{a-b}{2}>\sqrt{d}$, the majority vote of the the labels of the leaves is asymptotically positively correlated with the label of the root σ_{o}. In contrast, the correlation goes to zero below the KS threshold. In fact, in this case it can be shown that no estimator $\hat{\sigma}=\hat{\sigma}\left(\sigma_{x}, x \in F_{n}\right)$ is asymptotically positively correlated with σ_{o}.
6. Let $G \sim G(n, p, q)$ with $p>q$ where the labels σ_{i} are i.i.d. with $\mathbb{P}\left(\sigma_{i}= \pm 1\right)=1 / 2$. Let $k \geq 3$ be an integer. Fix k distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$. Show that

$$
\mathbb{P}\left(v_{1} \sim v_{2} \sim \cdots \sim v_{k} \sim v_{1}\right)=\left(\frac{p+q}{2}\right)^{k}+\left(\frac{p-q}{2}\right)^{k}
$$

